
Journal of Quality and Technology Management 
Volume XI, Issue I, June 2015, Page 97–106 

 

COMPARISON OF SUB-MODEL CURTAILING 
TECHNIQUES TO ACCELERATE VECTOR 

QUANTIZATION BASED SPEAKER IDENTIFICATION 
 

M. Afzal, T. Ahmad, M.F. Hayat, K.H. Asif, H.M. Shahzad 
Department of Computer Science and Engineering, 
University of Engineering and Technology, Lahore 

 

ABSTRACT 
 
Automatic speaker identification (ASI) is a remotely operative tacit technique for 
surveillance and tracking persons through digital telephone networks. Vector 
quantization (VQ) technique often performs in parity with Gaussian mixture 
model (GMM) in terms of accuracy and performs better in speed for automated 
speaker identification (ASI). Real-time speaker identification systems consume 
most of time comparing d-dimensional feature vectors extracted from a test 
speech sample with M codewords of codebooks of N registered speakers. Closest 
codeword search (CCS) is performed for N  T times to find the best matching 
codeword for T number of feature vectors extracted from test speech sample to 
find the best matching registered speaker. It requires d-dimensional distance 
computations for M   N   T times. ASI speedup techniques focus on reducing 
the effect of parameters T, N, M or d. Vantage point tree (VPT) technique tends 
to reduce M by indexing codeword into a binary tree like structure to speedup 

CCS. Although best case speedup is expected to be M 2/ log M but best average 

speedup factor empirically found is reportedly only 1.67 for codebook size 
M=512. On the other hand partial distortion elimination (PDE) that had been 
mostly ignored in ASI focuses on reducing d. It has been observed that PDE 
reduces codebook size M   d by 3 times more than VPT to speedup speaker 
identification 3 times faster. 
 
Keywords: Speaker identification; vector quantization; distortion computation; 
vantage point tree. 
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1) INTRODUCTION 
 
Automatic speaker identification (ASI) systems find wide usage in credit 
card payment through internet, in security access control, personnel 
attendance where computer vision is not possible etc. Multi-user systems 
utilize an ASI front end to deliver better user specific services by adapting 
to the current user. These systems may not require exact identity of the 
speaker but identification of his or her class of speakers might be 
sufficient to make an intelligent decision for system adaptation (He X., 
2000; Kuhn 2000). Automatic systems for speaker based segmentation of 
audio streams of legislative assembly proceedings, court room 
discussions and business meetings can use speaker identification subpart 
for this purpose. Surveillance and tracking of large number of wanted 
people for their appearance on the digital communication networks can 
be used to prevent crime and catch criminals through real-time ASI. 
Problem is that speaker identification time for a large number wanted 
persons on heavily loaded telephone networks is too large for real-time 
speaker identification. Thus real-time applications of ASI lay high 
emphasis on speeding up ASI. A number of techniques have been 
explored in (Kinnunen et. al., 2006) that tend to increase speed of speaker 
identification. These techniques manipulate speaker models as a whole. 
So, there is lack of research work on techniques that manipulate 
components with in speaker model. This paper discusses manifestation of 
ASI speedup techniques that operate on sub-components of speaker 
models. Such techniques that can also fully utilize the faster cache 
memory motivated this study. 
 
1.1) Speaker Identification using VQ Technique 
 
Major components of an ASI system based on VQ are shown in Figure 1. 
FE unit converts speech signal into a sequence feature vectors. These 
feature vectors are input to TR unit during training phase of the ASI 
system that trains codebooks of speakers to be registered with the system 
from their training speech samples. These codebooks which model 
registered speakers’ speech are stored in the database DB. During testing 
phase FE unit converts test sample to feature vectors that are fed to PM 
unit. This switching function of routing output feature vectors to TR or 
PM unit is depicted by arc on the arrow head sticking out from FE unit. 
PM unit computes distortion of feature vectors of test sample with each 
codebook of registered speaker. The decision unit identify one of the 
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registered speakers to be the test speaker whose codebook has minimum 
distortion with features of the test speech sample. 
 

 
 

Figure 1: Major Components of an ASI System 

 
Essentially, FE unit breaks speech sample into 70 to 100 frames per second 
with and overlap of 30% to 50% between consecutive frames. Mostly, 
Hamming window is applied to each frame before converting it to feature 
vector of up to 90 elements (Fan and Rosca, 2003). Mel-frequency cepstral 
coefficients (MFCC) are under frequent practice as feature vectors of size 
10 to 20 (Kinnunen et al., 2006). While MFCC based feature vectors are 
extracted by getting magnitude discrete Fourier transform (DFT) of each 
windowed frame and filtering it through a triangular filter bank. 
 
Output of the filter bank for each frame is log compressed before 
applying discrete cosine transform (DCT). First element of DCT 
representing energy is ignored and the remaining selected elements form 
a MFCC feature vector with dimension d of each vector. Let feature 
vectors extracted from speech samples of a speaker during training to be 

represented as  ̃  ( ̃   ̃   ̃     ̃ ̃)       ̃   
       ̃    ̃  . Extracted 

feature vectors X  from speech samples of speaker   are trained by TM 
unit through clustering algorithm like Linde, Buzo and Gray (LBG) to 
quantize them to M mean vectors or codewords. Together set of these 
codewords form a codebook   (             )       

         . 
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Let   (             )       
  represent the sequence of T feature 

vectors extracted by FE unit from speech samples of an unknown (test) 
speaker. Similarity measure of X with codebook C of a registered speaker 
is computed in terms of average quantization distortion using equation 
(1) as reported (Quatieri, 2002; Kinnunen et. al., 2006).  
 

     (   )  
 

 
∑  (    )
 
        (    )        

       (     )                (1) 

 

Where ),( Cxe i  represents distortion of a test vector, ix  with a codebook C 

of target registered speaker model. Here, ( , )i mx c stands for distance 

between the test vector, 1ix i T  and a codeword, 1mc m M  of 

codebookC . The test speaker is identified as one of the registered speaker 
whose model has the minimum average distortion. Various other 
similarity measures have also been suggested by (Fan and Rosca, 2003; 
Matsui and Furui, 1991; Wang et al., 1990).  
 

The vector distortion ( , ) min ( , )
m

i i m
c C

e x C x c


   for a test vector      
  

and codebook           is computed using Euclidean distance as given 
by Equation (2). 
 

( , )i m i mx c x c  
 

(2) 

 
Finding the Average Distortion of a test vector sequence 

1 2 3( , , ,..., )TX x x x x
 
with codebook },...,,,{ 321 MccccC 

 
of a registered 

speaker requires M T  computations of d-dimensional distance. In case 
of full search procedure, distortion computation with codebooks of N 
registered speakers involves N M T   d-dimensional distance 
computations. Subsequently minimum average distortion is computed. 
Thus the total computation involves 2 d N M T     additions and 
d N M T   multiplications giving time order of computational 
complexity as ( )O d N M T   . 

 

1.2) Speeding up VQ Based ASI Systems 
 
Each Euclidean distance computation for d-dimensional test vectors 

requires d  multiplications and 2 d additions. To find distortion ( , )ie x C
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between a single test vector ix
 
and a codebook C  requires M distance 

computations. Time order complexity of ( , )ie x C  computation can be 

given as ( )O d M . Idea behind speeding up techniques, focusing on 

reducing time for vector distortion computations studied for ASI systems 
follow two directions as described next. 
 
Vantage Point Tree (VPT) Indexing 
 
Kinnunen et al., (2006) have studied Vantage Point Tree (VPT) indexing 

technique to speedup the vector distortion ( , )ie x C
 
computation. The VPT 

indexing technique stores codeword of a codebook in an indexed tree 
structure so that average number of d-dimensional Euclidean distance 

computation is reduced to 2log ( )M . Using VPT, ( , )ie x C  computation is 

expected to have time order as 2( log )O d M  for a fully balanced binary 

tree structure.  
 
Experimental results of Kinnunen et al., (2006) to speedup speaker 
identification on TIMIT (Garofolo et al., 1993) speech corpora show that 

time reduction does not follow logarithmic order for computing ( , )ie x C  

hence effective time order is rather given as ( )VPTO d M    where VPT  is 

codebook reduction factor of VPT indexing scheme. Explanation of TIMIT 
speech corpora is made in speech material section. 
 
Partial Distortion Elimination (PDE) 
 
Partial distortion computation algorithm (Bei and Gray, 1985) computes 

distance of the vector ix  with first codeword 1c
 
of the codebook and sets 

it as the threshold distortion e . Next M-1 distances are computed 

incrementally checking 1 j d    the accumulating sum

2

, ,

1

( ) .
d

i j m j

j

s x c


   If s e distance computed is discarded and distance 

computation for the next codeword is started. If  ,s e j d   the threshold 

is updated e s  and the process is repeated till m=M to finalize vector 

distortion ( , )ie x C e . Effectively time order of computing ( , )ie x C  

becomes ( )PDEO d M   , where PDE  is the codebook reduction factor for 

PDE algorithm. PDE was first time used for speeding up ASI (Afzal and 
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Haq, 2010). PDE is very simple to implement and highly efficient as 
compared to VPT. This paper compares VPT and PDE to demonstrate 
how two techniques differ in pruning the sub-components of VQ speaker 
models called codebooks. The main objective is to lay emphasis on PDE, 
so that further research can be motivated regarding efficient cache usage 
and parallel implementations on massively parallel computer systems. 
 

2) METHODOLOGY 
 
2.1) Speech Material 
 
We acquired TIMIT speech data from Linguistic Data Consortium (LDC), 
Pennsylvania University, USA for empirical study of achievable speed up 
by PDE in this paper. TIMIT data consists of read speech samples of 
English language from 630 speakers consisting of 192 female and 438 
male speakers recorded with microphone. There are 10 speech sample 
files of each TIMIT speaker. Two ‘sa’ and five ‘sx’ of TIMIT files that 
contained same phonetic contents for each speaker were used for system 
training to build VQ codebooks. Three ‘si’ TIMIT files that have different 
phonetic contents for each speaker were used to test our trained ASI 
systems. It may further explain the TIMIT data set that ‘sa’, ‘sx’ and ‘si’ 
are file names for each TIMIT speaker’s sample. This files selection 
allowed us to conduct our experiments for speaker identification in text 
independent mode. Average duration of speech sample for system 
training and testing was 22.4 seconds and 8.4 seconds respectively. 
 
2.2) Feature Extraction, Model Training and Pattern Matching 
 
We down sampled TIMIT speech corpus to 8 kHz through anti-aliasing 
filter in our experimentation. Digital speech samples broken into frames 
of 30 milliseconds duration had 33% overlap between consecutive frames. 
Energy of each frame of digital speech signal was computed. Speech 
signal frames with energy less than 1.5% of the average frame energy 
were discarded as silence. This threshold frame energy based silence 
removal criteria reduced total number of speech frames extracted from 
training and testing samples by 10% and 8.5% respectively. Discrete 
Fourier Transform (DFT) of each non-silence frame was taken after 
applying Hamming window. Approximation of Mel-frequency scale 
distribution along the frame frequency spectrum defined by Equation (3) 
was used to make 19 triangular filters. 
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)700/1(log2595 10 LinMel ff                                             (3) 

 
Subsequently outputs of Mel-frequency triangular filter banks was log 
compressed and DCT was taken. The first value was ignored and next 12 
values of DCT cepstrum were selected as 12-dimensional MFCC feature 
vectors. This dimension of MFCC vectors was selected to facilitate 
comparison with results reported in (Kinnunen et al., 2006). MFCC 
vectors extracted from test samples were also stored for use in different 
test runs. LBG algorithm was used to compute and store VQ codebook 
models of the speakers from feature vectors extracted from training 
samples.  
 
2.3) Performance Testing 
 
Silence removal threshold energy factor of 1.5% and 19 size filter bank 
were set after extensive training and testing for VQ model of size 64 for 
maximum accuracy. Identification accuracy was measured by 
identification error rate. 
 
All programs for feature extraction, LBG algorithm and speaker 
identification with minimum distortion were made using Microsoft 
Visual C#. Hardware used for this purpose was HP Compact dx7400 
Micro tower with Intel(R) Core(TM)2 Duo CPU E6550 @2.33 GHz with 
2.00 GB memory installed. Windows Vista Business 32-bit version (2007), 
Service Pack 1 that installed on the HP machine has been used. 
Identification time for all 630 TIMIT speakers was computed by calling 
‘DateTime.Now’ function of Microdsoft.NET framework library. 
 

3) RESULTS AND DISCUSSIONS 
 
Results of tests of different experiments performed on TIMIT speech data 
for close-set speaker identification are shown in Table 1 and Table 2 for 
PDE and VPT respectively.  
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Table 1: Accuracy and average speedup factors for VQ codebooks  
with PDE on TIMIT data 

 

Codebook 
Size 

(M d ) 

Error 
Rate 

% 

Times 
Seconds 
Baseline 

Times 
Seconds 

PDE 

Speedup 
Factor 

Effective Curtailed 
Model Size  

M’ or d’ 

M’ d’ 

32x12 14.92 0.74 0.26 2.90:1 11.03 4.14 

64x12 4.92 1.43 0.45 3.17:1 20.19 3.79 

128 x12 1.27 2.79 0.81 3.45:1 37.01 3.47 

256 x12 0.32 5.50 1.47 3.73:1 68.63 3.22 

512 x12 0.48 11.00 2.81 3.92:1 130.61 3.06 

 
 

Table 2: ASI Performance of Vantage Point Tree (VPT) 
Experiments on TIMIT Database 

 

Model 
Size 

(M d) 

Error 
Rate 

% 

Time 
Seconds 
Baseline 

Time 
Seconds 

VPT 

Speedup 
Factor 

Effective 
Model Size

M   

32 x12 14.92 0.74 0.72 1.04:1 30.77 

64 x12 4.92 1.43 1.32 1.09:1 58.72 

128 x12 1.27 2.79 2.41 1.16:1 110.34 

256 x12 0.32 5.50 4.40 1.24:1 206.45 

512 x12 0.48 11.00 6.47 1.70:1 301.18 

 
Identification accuracy increases with model size but decrease for 
codebook of size 512 due to over fitting in both PDE and VPT cases. Such 
behaviour is also observed in (Kinnunen et al., 2006). PDE speedup factor 
increases monotonously with increase in model size. VPT speedup factor 
also increases monotonously with increase in model size. Our VPT 
speedup factors are almost the same as those shown in (Kinnunen et al., 
2006). Anyhow speedup factors of PDE are much larger than those due to 
VPT. Speeding up due to PDE has been translated into reduced codebook 
size (d’ and M’) values to calculate effective model size due to 
computation curtailing so that PDE and VPT can be compared on a 
common criteria. 
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Figure 2: Comparison of Codebook Curtailing achieved by PDE and VPT 

 
Figure 2 gives a pictorial view of comparison between VPT based 

reduction in codebook size as VPT  and PDE based reduction in codebook 

size as PDE  with respective to different actual codebook sizes. 

 

4) CONCLUSIONS 
 
This paper presented a comparative analysis of capabilities of VPT and 
PDE algorithms to speedup speaker identification process based on vector 
quantization. Our analysis showed that PDE is 3 times more effective than 
VPT in speeding up ASI.  It is, therefore, recommended that PDE should 
be studied in combination with various speaker model curtailing 
techniques to further speedup speaker identification process. It can be 
concluded that PDE is very simple to implement and it can be applied to 
substantially curtail speaker model which results in speeding up VQ 
based speaker identification for smaller as well as large sized speaker 
models. Also that PDE is equally good for smaller as well as larger 
codebooks while VPT offers diminishing returns when applied to smaller 
codebooks. 
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